“此外,在自然界中,一些微生物也需要通过有氧呼吸获得能量,例如细菌中的芽孢杆菌、根瘤菌、固氮菌、硝化细菌以及霉菌、放线菌等在有氧环境中都吸收分子氧进行呼吸作用。兼性厌氧微生物在有氧条件下氧阻遏发酵作用,促进呼吸作用,也通过有氧呼吸获得生命活动所需的能量。这些微生物虽然微小,但它们在氧的循环和利用中也有着不可忽视的作用。”老师通过显微镜展示了一些微生物的图像,让他们对微生物的呼吸有更直观的认识。
在讲解完氧元素的生理作用后,老师开始介绍氧元素的分布情况。“氧是地壳中最丰富的、分布最广的元素,它在地壳中基本上是以氧化合物(如二氧化硅、硅酸盐及含氧酸盐等)的形式存在,在整个地壳中的质量分数为 48.6%。在大气中主要以氧单质(氧气和臭氧)的形式存在,约占整个大气体积的 21%,大气质量的 23%。在海洋、江河以及湖泊中主要以水的形式存在,质量分数约为 88.8%。此外,氧在人体和动物中质量占比约为 65%,在火星大气中也含有约 0.15%的氧气。可以说,氧元素无处不在,它构成了我们这个丰富多彩的世界的重要基础。”
老师指着墙上的一幅地球剖面图,上面标注着氧元素在不同圈层中的分布。“同学们,想象一下,从地球的核心到大气层,氧元素就像一个无形的纽带,将各个部分联系在一起。在地壳中,那些坚硬的岩石里蕴含着大量的氧,它们参与了地球漫长的地质演化过程。在大气中,氧气是我们呼吸的源泉,臭氧则在高空为我们阻挡了紫外线的伤害。而在水体中,氧溶解在水中,维持着水生生物的生存。这种广泛的分布,决定了氧元素在地球生态系统中的核心地位。”
“地球早期的大气是缺氧的,属于还原性质的大气。氧逐渐增加是大气圈的主要变化之一。”老师开始讲述大气氧含量的演变过程,她的声音仿佛带着同学们穿越到了远古的地球。“有科学家推测,37 亿年前也许已存在与氧混合的大气,但缺少有力的证据。一般认为太古宙的自由氧已有明显的意义,可能已存在臭氧。在早元古宙,南非有古土壤,并且枕状玄武岩中有氧化环,说明那时大气中自由分子氧已增多。”
老师在黑板上画出了不同时期地球大气的示意图,展示氧气含量的变化趋势。“有学者认为在 23 亿年前已出现大量红层,在各洲都有红色层的记录。从那时起易氧化的碎屑硫化物、铀云母从地质记录中基本消失,这表明在大气中已有较多的自由氧。18 - 20 亿年前广泛分布的条带沉积铁矿是海洋中二价铁氧化为 Fe?O?沉积形成的,另一种猜测认为可能铁细菌通过光合作用产生出氧,氧化了亚铁,这都说明那时大气中自由氧的浓度不断增高。”
“最原始的真核细胞可能在 25 - 17 亿年前出现,真核生物是喜氧的,呼吸能力增大。个体较大的单细胞真核生物,具复杂细胞器,大约出现在 14 亿年左右,要求氧的浓度更高。元古宙晚期出现红层,是陆上二价铁的氧化,红层是含有 Fe?O?的沉积物,产生 Fe?O?所需的氧含量要比产生条带状铁矿岩层 Fe?O?所需的氧含量高。”老师用生动的语言描绘着地球早期生命与氧气的关系,让同学们感受到生命与环境相互影响的奇妙。
“自由氧的累积有多种途径,其中光致离解的作用不容忽视。在 45 - 32 亿年前,估计大气上层温度达 1500℃ - 2000℃,水汽和甲烷在大气上层受到光的分解,即光致离解作用,水分解成氢和氧。海拔高度约 600km 以上是逃逸层,那里温度高而空气稀薄,分子间碰撞的机率小,低分子量的氢以相当快的速度逃逸出地球引力圈外,而分子量较重的氧留下,因此氧逐渐累积。水的‘光致离解’产生氧后,部分活泼的自由氧与甲烷作用形成二氧化碳和水,产生的水在高空中又‘光致离解’,通过甲烷和水的接力分解,自由氧不断有所增加。不过,早期大气中水汽的光致离解,提供的自由氧,大部分消耗在火山还原挥发物的氧化和风化中,所以氧累积很缓慢。”老师通过动画演示,向同学们展示了光致离解的过程,让这个复杂的科学概念变得更加易懂。
“游离氧的长期不断累积,在高层大气中形成了薄薄的臭氧层。臭氧层的形成是生物发展的必要条件之一,它吸收紫外线,大气中氧达到现代水平的 1%时就可形成保护作用,所以 20 亿年前可能已存在这个条件,但有的学者估计在 16 亿年前才形成臭氧层。臭氧层保护了生物,生物的作用又进一步加强了臭氧层,这是一个相互促进的过程。”老师强调了臭氧层对于地球生命的重要性,让同学们意识到氧元素在地球保护机制中的关键作用。
本小章还未完,请点击下一页继续阅读后面精彩内容!